Lie groups and error analysis

نویسندگان

  • Jeremy Schiff
  • Steve Shnider
چکیده

A new approach to error analysis is introduced, based on the observation that many numerical procedures can be interpreted as computations of products in a suitable Lie group. The absence of an additive error law for such procedures is intimately related to the nonexistence of bi-invariant metrics on the relevant groups. Introducing the notion of an almost Inn(G) invariant metric (a left invariant, almost Inn(G) invariant metric can be constructed on any locally compact connected group having a countable basis for its identity neighborhoods), we show how error analysis can nevertheless be done for such procedures. We illustrate for what we call “scalar calculations without writing to memory”; the Horner algorithm for evaluation of a polynomial is such a calculation, and we give explicit error bounds for a floating point implementation of the Horner algorithm, and demonstrate their usefulness numerically. A left invariant, almost Inn(G) invariant metric on a group induces a metric on a homogeneous space of the group with useful properties for error analysis; treating R as a homogeneous space of the group of affine transformations of R we compute a new metric that unifies absolute and relative error. Mathematics Subject Classification Numbers. Primary: 65G99. Secondary: 22E99, 65G05.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accumulation of Global Error in Lie Group Methods for Linear Ordinary Differential Equations

In this paper we will investigate how the local errors accumulate to the global error in Lie group methods for linear ODEs. The concept of the local and global errors has to be redefined to fit in the framework of Lie groups and algebras. Formulas for tracking the global error are proposed and demonstrated on numerical examples.

متن کامل

Harmonicity and Minimality of Vector Fields on Lorentzian Lie Groups

‎We consider four-dimensional lie groups equipped with‎ ‎left-invariant Lorentzian Einstein metrics‎, ‎and determine the harmonicity properties ‎of vector fields on these spaces‎. ‎In some cases‎, ‎all these vector fields are critical points for the energy functional ‎restricted to vector fields‎. ‎We also classify vector fields defining harmonic maps‎, ‎and calculate explicitly the energy of t...

متن کامل

INEXTENSIBLE FLOWS OF CURVES IN LIE GROUPS

In this paper, we study inextensible ows in three dimensional Lie groups with a bi-invariant metric. The necessary and sucient conditions for inextensible curve ow are expressed as a partial dierential equation involving the curvatures. Also, we give some results for special cases of Lie groups.

متن کامل

Lie symmetry analysis for Kawahara-KdV equations

We introduce a new solution for Kawahara-KdV equations. The Lie group analysis is used to carry out the integration of this equations. The similarity reductions and exact solutions are obtained based on the optimal system method.

متن کامل

Einstein structures on four-dimensional nutral Lie groups

When Einstein was thinking about the theory of general relativity based on the elimination of especial relativity constraints (especially the geometric relationship of space and time), he understood the first limitation of especial relativity is ignoring changes over time. Because in especial relativity, only the curvature of the space was considered. Therefore, tensor calculations should be to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000